Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation

نویسندگان

  • Debalaya Sarker
  • Saswata Bhattacharya
  • Pankaj Srivastava
  • Santanu Ghosh
چکیده

The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of vanadium-doping on the magnetism of FeCo/SiO2 nanoparticle.

FeCo nanoparticles (4 ± 1 nm), encapsulated by SiO2, were synthesized with and without a 2% (atomic ratio) vanadium doping. The impact from the presence of vanadium, an additive often used in the bulk to alter both physical and mechanical properties, on the nanomagnetism was probed by element-specific X-ray spectroscopy and magnetometry techniques. While the nanostructure was unaffected by the ...

متن کامل

Facile synthesis of high magnetization long term stable bimetallic FeCo nanoparticles

In this study, we reported a facile synthesis of bimetallic FeCo nanoparticles (Fe-Co NPs) by FeSO4.7H2O and Co(Ac)2.4H2O in the presence of sodium borohydride and 2-thiotic acid. The structure and morphology of the nanoparticles were characterized by X-Ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), and Transmission Electron Micros...

متن کامل

Synthesis and stabilization of FeCo nanoparticles.

FeCo alloys are an important soft magnetic material because of their unique magnetic properties including large permeability and very high saturation magnetization. FeCo nanoparticles are ideal building blocks for nanostructured thin film or bulk magnetic materials1-3 and are also suitable for biomedical applications.4 However, synthesis of monodisperse FeCo nanoparticles remains a challenging ...

متن کامل

Bias dependence of spin injection into GaAs from Fe, FeCo, and (Ga,Mn)As contacts

Spin injection from Fe(001) and (Ga,Mn)As(001) into n-GaAs(001) was investigated using a method which provides two-dimensional cross-sectional images of the spin polarization in GaAs. While the distribution of the spin polarization below the injecting contact is nearly uniform for (Ga,Mn)As, a strong confinement near the contact edge is observed for Fe and FeCo. The spin polarization in GaAs ch...

متن کامل

Thermal effect and role of entanglement and coherence on excitation transfer in a spin chain

We analyze the role of bath temperature, coherence and entanglement on excitation transfer in a spin chain induced by the environment. In Markovian regime, we show that coherence and entanglement are very sensitive to bath temperature and vanish in time in contrary to the case of having zero-temperature bath. That is while, finding the last qubit of the chain in excited state increases by incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016